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Abstract — There are solution approaches for several thermal-

physical inverse problems discussed in the paper that are based 

on extension of non-stationery temperature field in the series. An 

applied method for separation of variables differs from the 

conventional method for separation of variables. Effect thereof 

differs as well and is especially convenient for solving inverse 

thermal-physical problems. Abraham Temkin (1919–2007) 

created this method for separation of variables. He also offered 

several methods for solving inverse problems. Those methods are 

not studied enough and are not known among a wider range of 

experts. Those methods have been created between 1956 and 

1973 and have been published in various journals in Samara, 

Moscow, Minsk, and Riga. All those publications are in Russian 

and not available in electronic format. 
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I.  INTRODUCTION  

The first publication that we know and which laid the 
foundation for unconventional separation of variables is [1]. In 
that paper it is proved that a function that is defined by a 
convolution integral 
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can be expanded in a following series  
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where ( )( )akξ  is k-th derivative of function ( )tξ  at point a, 

( )( ) ( )aa ξξ =0  and  
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The aforesaid paper illustrates that the series (2) converges if 

all derivatives ( )( )akξ  and all integrals ( )( )tk−ϕ  are limited. A. 

Temkin called that series (2) as a generalized Taylor series due 
to the fact that if the function  
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where δ is the Dirac delta function, then 
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and in such a case the series (2) is an extension of function f(t) 
in the Taylor series.  

As solution of a heat transfer equation is expressed by a 
convolution integral, if initial distribution of temperature is 
homogenous and time-dependent boundary conditions are set 
on the boundary, it is obvious that attempt to apply the 
discussed series for solving a heat transfer equation is useful. 
Obtained solutions [2] are in the form convenient for one to 
apply them for solving inverse heat transfer problems. Later on 
A.Temkin had many publications devoted to those issues, 
whose results are summarized in a monograph [2] published in 
1973. It should be noted that computing opportunities were 
quite limited at the time when those methods were created; 
therefore the methods have not been verified sufficiently.  

II. APPLICATION OF A GENERALIZED TAYLOR SERIES FOR 

SOLUTION OF A HEAT TRANSFER EQUATION 

A solution of heat transfer equation put down by means of a 
generalized Taylor series in a voluntary curved area  is given in 
[2]. For the purpose of simplicity, we shall consider only the 
simplest segments where every point depends only on one co-
ordinate of an area – a plate, a cylinder, and a sphere. If 
speaking on inverse heat transfer problems, solids of such 
particular kind are used for determination of thermo-physical 
properties of material. A symmetric temperature field in those 
solids is described by an equation 
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where t is temperature, τ is time, x is the co-ordinate, k=1 is the 
plate, k=2 is the cylinder, k=3 is the sphere, a – temperature 
conductivity coefficient. 
If convective heat exchange occurs with the environment 

having time-dependent temperature ( )τet  on the surface, then 

following equality is valid on the boundary 

( ) ( ) ( )( )ττα
τ
τ

λ ,
,

btt
bt

e −=
∂

∂
,   (7) 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2020.14.7 Volume 14, 2020

ISSN: 2074-1278 46



where λ stands for heat transfer coefficient, α is heat exchange 
coefficient, b  is a half of thickness in case of a plate or radius 
in case of a cylinder or a sphere.  

Initial conditions are 

( ) 00, txt = .     (8) 

When considering solution of problem (6) - (8), transition to 

dimensionless values is more convenient:  
b

x
N =  is 

dimensionless co-ordinate [ ]1;1−∈N  in case of a plate and 

[ ]1;0∈N  in case of a sphere and a cylinder, 
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= . Problem (6) - (8) in dimensionless form shall 

be written down as follows 

N

T

N

k

N

T

F

T

∂
∂−

+
∂

∂
=

∂
∂ 1

2

2

                                                      (9) 

( ) ( ) ( )( )FTFTB
N

FT
e ,1

,1
−=

∂

∂
                                           (10) 

( ) 00, =NT                                                                           (11) 

According to [2], solution of the problem (9) – (11) is of the 
following form, where 
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Function ( )FNT ,1 satisfies equation (9) and boundary 

conditions (10), whereas function ( )FNT ,2  satisfies equation  

(9) and those boundary conditions  
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This result is obtained in two ways in the [2], id est, by 
inserting (13) and (14) in the equation (9) and equalling the 

coefficients to derivatives of the same order  
( ) ( )FT
n

e  and to 

the latter from the conventional model.  

Here it should be noted that solution of the problem (9) is also 
expressed in the form of (12) – (14) under boundary conditions 

of different type. Functions ( )NPn  depend on a type of 

boundary conditions and geometry of an area. Those are either 
polynomials or functions where a polynomial is included as 

addend. In this account those functions are called quasi 
polynomials in the [2].  

For initial condition (11) be met, the following is set in formula 
(14) 
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There is proved in the [2] that ( ) 0,lim 2 =
∞→
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F

, thus at large 

values F addend ( )FNT ,2  can be not taken into account in 

formula (12). The following inequality shows that [2] 
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where µ>0.  

It is proved in the [2] that P2n(N)>0, P2n+1(N)≤0 and that 
inequality is valid 

( )
n

n
kkB

NP 







+≤

2

11
.                                                         (18) 

Therefore if B>1 and all derivatives 
( )( )FT
n

e  are limited, then 

(13) converges. Besides the more intense heat exchange 
between the solid and the ambience, the faster the series 
converges. 

There is method for determination of an asymmetric 
temperature field discussed in the [2].  

III. DETERMINATION OF TEMPERATURE CONDUCTIVITY 

COEFFICIENT  

Temperature conductivity coefficient is determined in 
laboratory conditions, by measuring temperature inside a 
simple-shaped solid while it is warmed up (cooled down more 
rarely). Heat transfer process is described by an equation (6), 

where x∈[0,b]. Temperature is measured at two inner points x1 
and x2, x1 < x2. There is a case possible when x2=b.  Supposing 
that x2=b and transferring to dimensionless values as showed 
before, but keeping real temperature in equation (9), we get 
that heat transfer process can be described by equation (9) and 
boundary conditions 
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where t1(F) is temperature measured on the boundary x=b. 
Solution of problem (9), (19) at sufficiently high F values is 
written down as follows [2]  
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Co-ordinate functions Pn(N) are given in the [2]: 

if k=1, then 
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If k=2, then 
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When transferring from dimensionless time F to real time τ in 
formula (20), we get 

( ) ( ) ( )( )
n

n

n
n

a

b
tNPNt ∑

∞

=













=

0

2

1, ττ .   (21) 

Temperature at N1=x1/b, N1∈[0,1] is measured. Thus, taking 
final number of addends in formula (21) and denoting b

2
/a=y, 

we obtain 
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Because P0(N)=1 for all k=1,2,3 [2]. In this way we get that y 
is a polynomial root. If M=1, then it follows from (22) that 
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If temperature is measured in the middle (N1=0), then if k=1, it 
results from (23) that 
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and if k=2, then 
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Formulas (23) – (25) are found in the [2] by means of an 
approach described in this article. The [3] provided formulas 
(24) and (25), where they are obtained in a different way. 

It is clear that a more precise result is anticipated if several 
addends are taken in the sum (22). If M=2, then it follows from 
(22) that 
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Equation (26) is a quadratic equation, thus it has two roots 
wherefrom only one is valid. There is justified in the [4] that if 

( ) 01 >′ τt  and ( ) 01 <″ τt  that is not hard to be ensured 

experimentally, multiplication of the roots from equation (26) 
is negative. Hence a question as regards a valid root fools 
away, because y must be definitely positive.  

If temperature is measured in the centre (N1 =0) and k=1, then 
(26) results in [2], [4] 
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When M=3, N1=0 and k=1, then the following occurs [4]: 
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In the [4] we referred to a large number of calculations made, 
by using mathematical software, which illustrated that equation 
(28) had one real and two complex roots at most various 

boundary conditions t1(τ). The [4] compares accuracy of 
formulas (24), (27), and (28) for determination of temperature 
conductivity coefficient with temperature field being chosen as 
input data, which is obtained at a given temperature 
conductivity coefficient, by solving a heat transfer equation 
numerically by means of mathematical software. It is 
concluded that formula (27) and (28) is significantly more 
precise than formula (24) and that accuracy of all discussed 
formulas improves if time is increased while temperatures used 
in calculations are recorded.  

IV. CALCULATION OF BOUNDARY CONDITIONS AS PER 

TEMPERATURE MEASUREMENTS INSIDE A SOLID 

Surface temperature of a solid can be determined by technical 
means (thermal imaging camera), but it requires a surface be 
open and accessible. If it is not the case, thermal imaging 
camera cannot be applied. Temperature measurements inside a 
solid by means of a thermocouple, and determination of surface 
temperature of a solid by using those measurements would be a 
solution. Such approach is recommended in the [2].  

Let us consider simple-shaped solids only where heat transfer 

process may be described by equation (6) and x∈[0,b]. it 
should be noted that this approach may be also applied to 
solids of complex shapes. Thermal-physical properties of 
material that is heat transfer coefficient λ and temperature 
conductivity coefficient a are known. Let us suppose that 
temperature is measured at an inner point of area x1=b1, b1<b. 

Then in area x∈[0;b1] equation (6) with the following 
boundary conditions is valid 

( ) ( )ττ 11 , tbt = ,    (29) 
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where t1(τ) is the measured temperature. Temperature field in 

the area x∈[0;b1] can be calculated unequivocally. 

Temperature t(b,τ) must be found. The area x∈[b1,b] is a plate 
(k=1), an empty cylinder (k=2) or an empty sphere (k=3) with 
thickness b-b1. If we could determine temperature field in this 

area, temperature t(b,τ) would be also known. So that 
temperature field in this area would be determined 
unequivocally, boundary conditions must be set on both 
boundaries of the area. But it is impossible to set boundary 
condition at x=b, because it is a calculated value. It is known 
according to [5] that temperature field in solids of such type is 
calculated unequivocally if boundary conditions of two 
different types are set on the boundary x=b1 while boundary 
conditions on the boundary x=b are not set. In the [2] boundary 
conditions of such kind are called boundary conditions of the 
fourth type named after Likov. As temperature field in the area 
[0,b1] is calculated, then heat flow is also calculated at x=b1, 

namely, ( ) ( )
x

bt
q

∂
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,
. Therefore in the area [b1,b] equation 

(6) with boundary conditions (29) is valid, and  
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where q(τ) is got from solution of problem (6), (29). When 
problem (6), (29), and (30) is transferred to dimensionless 

form, we get equation (9), where N=x/b1, N∈[1,b/b1], and 
boundary conditions are 
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In the last formula U(F) is acquired from solution  of problem 
(9), (31). Solution of problem (9), (31), and (32) in the case of 
high  F values is searched in the following form [6]: 
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where co-ordinate functions Pn(N,1) and Pn(N,2) are searched, 
by inserting (33) in equation (9) and requesting compliance 
with the boundary conditions. The solution of described 
problem if k=2 can be written down as a recurrent formula  

( ) ( )∫∫ ⋅=+

η

ξξξ
η
η

11

1 ,, dmP
d

mNP n

N

n , m=1,2    (34) 

( ) ( ) 12,,ln1, 00 =−= NPNNP      (35) 

Interesting to note that in the [2] solution of problem (9), (31), 
and (32) is not obtained in the form (34), (35). Author of the 
[2] followed the following scheme. Solution of problem (9), 

(31) at high F values and N∈[0,1] have the form 
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Ultimately both series are merged in one ultimately in formula 
(33), whose each addend is multiplication of temperature T1(F) 
derivatives and corresponding co-ordinate functions. Hence, 
solution of problem (9), (31), and (33) is found in the form 
(36). It is proved in the [2] that solution of problem (9), (31) if 

N∈[0,1], and (9), (31), and (32) if N>1 is (36), as well as co-
ordinate functions Pn(N) are the same in both problems unless 
U(F) in boundary condition (32) is set by formula (37).     
Eventually temperature on the area boundary is calculated 
according to formula 
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V. DETERMINATION OF TEMPERATURE CONDUCTIVITY 

COEFFICIENT FOR THIN MATERIALS 

If material is thin, for instance, window glass, film, etc., 
thermocouple cannot be placed inside such material. In such a 
case the studied material can be placed between two materials 
with known thermal-physical properties and thermocouples can 
be placed in these materials as showed in figure 1. In such a 
scheme thermocouple co-ordinates are x1, x2, x3, and x4. 
Temperature conductivity coefficient a1 and heat transfer 
coefficient λ1 are established. The studied material is located 
between x=0 and x=b.  

In order to determine temperature conductivity coefficient a of 
the studied material, the following scheme is proposed in the 
[2]: 

1. Heat flow q(x2,τ) at point x=x2 is established 
according to temperature measurements at points 
x=x1 un x=x2. 

2. When t(x2,τ) and q(x2,τ) are known, t(0,τ) and 

q(0,τ) are calculated as it is shown in the previous 
paragraph. 

3. Having applied temperature measurements at 

points x=x3 and x=x4, t(b,τ) and q(b,τ) are 
calculated similarly. 

4. Ratio q(b,τ)/q(0,τ) can be calculated - that is a 
value obtained experimentally.  

5. According to known t(0,τ) and t(b,τ), temperature 

field at range x∈[0,b] is found, and ratio 

q(b,τ)/q(0,τ) is calculated therefrom. This ratio 
depends on wanted temperature conductivity 
coefficient a. 

6. Having equalled results obtained pursuant to point 
4 and 5 above, temperature conductivity coefficient 
a is established. 

One should note that it is important so that t(-l,τ) would not be 

equal to t(l+b,τ). 
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The discussed scheme is implemented in [7], by using 

temperature field in the area x∈[-l,l+b] as input data that is 
calculated by means of mathematical software 
MATHEMATICA, and by solving the problem numerically. 
The [7] includes a conclusion that the scheme described in the 
[2] runs, but restrictions as regards thickness b of studied 
material exist. If b is decreased, then problem becomes ill 
conditioned and it is impossible to establish temperature 
conductivity coefficient. It manifests itself in such a way that 

time range [τ1,τ2] does not exist at too small b values where a 
is constant. Physically it means that if thickness of the studied 
material is too little, then this material does not practically 
affect readings of thermocouple if compared to the case if the 
studied material would not exist at all. 

CONCLUSIONS 

The examined solution of heat transfer equation and inverse 
problems associated therewith are less known to a wide range 
of experts. Practical calculations given in [4], [6], [7] illustrates 
that theoretical concepts summarized in the [2] are applicable 
for solving inverse heat transfer equations. Discussed problems 
are only a part of scientific heritage left by A.Temkin. Major 
part is not studied yet up to date. 

REFERENCES 

[1] A.Temkin, “Generalised Taylor series and the theorem of product of 
images,” Kuibishev Industrial Institute, Kuibishev, pp. 529-551, 1956. 
(in Russian) 

[2] A. Temkin, “Inverse methods of thermal conductivity”, Moscow: 
Energya, 1973. (in Russian) 

[3] A. Sashov, G. Volohov, T. Abramenko and V. Kozlov, “Methods of 
determination of heat and temperature transfer,” Moscow: Energya, 
1973. (in Russian) 

[4] I. Iltins and M. Iltina, ”Determination of heat physical characteristics by 
using series along boundary condition derivatives”, WSEAS Press, 
Proceedings of the 2nd International Conference on Mathematical 
Models for Engineering Science. Puerto De La Cruz, Tenerife, Spain, 
December 10-12, 2011. 

[5] A. Likov, “Heat and mass transfer,” Moscow: Energya, 1978. (in 
Russian) 

[6] I. Iltins, “A. Temkin’s method of separation of variables”, Scientific 
Proceedings of Riga Technical University, Computer Science, vol. 25, 
pp. 55-61, 2005. 

[7] I. Iltins and M. Iltina, “One method of determination of thermal and 
physical characteristics of film-base materials,” Scientific Proceedings 
of Riga Technical University, Computer Science, vol. 50, pp. 67-71, 
2011.  

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS 
DOI: 10.46300/91014.2020.14.7 Volume 14, 2020

ISSN: 2074-1278 50

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 




